ลำดับการคายประจุแบตเตอรี่ลิเธียม

อัตราการชาร์จและการปล่อยประจุของแบตเตอรี่จะถูกควบคุมโดยอัตรา C โดยทั่วไปความจุของแบตเตอรี่จะได้รับการจัดอันดับที่ 1C ซึ่งหมายความว่าแบตเตอรี่ที่ชาร์จเต็มที่มีอัตรา 1Ah ควรให้กระแส 1A เป็นเวลา 1 ชั่วโมง แบตเตอรี่เดียวกันที่ปล่อยประจุที่ 0.5C ควรให้กระแส 500mA เป็นเวลา 2 ชั่วโมง และที่ 2C จะจ่ายกระแส 2A เป็นเวลา 30 นาที การสูญเสียเมื่อปล่อยประจุอย่างรวดเร็วจะลดระยะเวลาการปล่อยประจุ และการสูญเสียเหล่านี้ยังส่งผลต่อระยะเวลาการชาร์จอีกด้วย วิธีการวัดการคายประจุเองของแบตเตอรี่ลิเธียมไอออนส่วนใหญ่แบ่งออกเป็น 2 ประเภท: 1) วิธีการวัดแบบคงที่ ซึ่งได้อัตราการคายประจุเองโดยการยืน

โซลูชันชั้นนำสำหรับสถานีไฟฟ้าพลังงานแสงอาทิตย์ในระบบไมโครกริด

แผงโซลาร์เซลล์รุ่นใหม่

แผงโซลาร์เซลล์รุ่นใหม่ที่มีโครงสร้างทนทานและเคลือบผิวพิเศษเพื่อผลผลิตพลังงานแสงอาทิตย์ที่สูงสุด

แผงโซลาร์เซลล์ของเราถูกออกแบบมาเพื่อประสิทธิภาพที่ยอดเยี่ยม โดยผสานเทคโนโลยีเซลล์แสงอาทิตย์ที่ทันสมัยและเคลือบป้องกันแสงสะท้อน เพื่อให้ได้ผลผลิตพลังงานที่สูงสุด เหมาะสมกับการติดตั้งในระบบไมโครกริด ไม่ว่าจะเป็นโครงการขนาดเล็กหรือใหญ่ มีความสามารถในการทำงานได้อย่างเสถียรในสภาพแวดล้อมที่หลากหลาย

แผงโซลาร์เซลล์โมโนคริสตัลไลน์คุณภาพสูง

แผงโซลาร์เซลล์โมโนคริสตัลไลน์คุณภาพสูงที่มีประสิทธิภาพในการแปลงพลังงานสูงและดีไซน์ทันสมัย

แผงโซลาร์เซลล์โมโนคริสตัลไลน์ของเราผลิตจากซิลิคอนคุณภาพสูง ซึ่งให้ประสิทธิภาพในการแปลงพลังงานที่ดีที่สุดสำหรับการติดตั้งบนหลังคาหรือระบบกระจายพลังงาน ด้วยการออกแบบที่กระทัดรัดและความทนทานที่สูง ทำให้เหมาะสมกับการใช้งานในไมโครกริดที่ต้องการพลังงานสูง

หน่วยเก็บพลังงานแบตเตอรี่ลิเทียม-ไอออน

หน่วยเก็บพลังงานลิเทียม-ไอออนที่ออกแบบมาสำหรับการขยายระบบในไมโครกริด

โซลูชันการเก็บพลังงานลิเทียม-ไอออนของเราช่วยให้การจัดการพลังงานแสงอาทิตย์เป็นไปอย่างราบรื่น โดยเก็บพลังงานส่วนเกินที่เกิดขึ้นในช่วงกลางวันเพื่อใช้งานในภายหลัง ด้วยเวลาตอบสนองที่รวดเร็วและอัตราการปลดปล่อยพลังงานที่สูง ระบบเหล่านี้รองรับการทำงานที่ไม่สะดุดและความเสถียรของกริดในการติดตั้งทั้งในเชิงพาณิชย์ ที่อยู่อาศัย และในพื้นที่ห่างไกล

ระบบอินเวอร์เตอร์อัจฉริยะแบบรวม

ระบบอินเวอร์เตอร์อัจฉริยะที่มีการตรวจสอบและควบคุมการกระจายพลังงานแบบเรียลไทม์

ระบบอินเวอร์เตอร์อัจฉริยะของเราถูกออกแบบมาเพื่อรองรับแหล่งพลังงานหลายประเภท โดยจะเชื่อมต่อแผงโซลาร์เซลล์ แบตเตอรี่เก็บพลังงาน และกริดพลังงานทั้งหมดเข้าด้วยกัน โดยระบบนี้จะช่วยเพิ่มประสิทธิภาพการกระจายพลังงานผ่านอัลกอริธึมอัจฉริยะ ทำให้ผู้ใช้สามารถตรวจสอบและปรับแต่งการไหลของพลังงานแบบเรียลไทม์ ซึ่งเพิ่มประสิทธิภาพโดยรวมของเครือข่ายไมโครกริด

สถานีพลังงานแสงอาทิตย์พกพาสำหรับการใช้งานเคลื่อนที่

สถานีพลังงานแสงอาทิตย์เคลื่อนที่ที่มีโมดูลในตัว เหมาะสำหรับการใช้งานนอกกริดและการใช้งานในภาวะฉุกเฉิน

เหมาะสำหรับความต้องการพลังงานในกรณีฉุกเฉินหรือการใช้งานนอกกริด สถานีพลังงานแสงอาทิตย์เคลื่อนที่นี้รวมแผงโซลาร์เซลล์ แบตเตอรี่เก็บพลังงาน และเทคโนโลยีอินเวอร์เตอร์ในหน่วยเดียวกัน ทำให้สามารถให้พลังงานสำรองสำหรับเครื่องมือ แสงสว่าง และการสื่อสารในพื้นที่ที่ไม่สามารถเข้าถึงกริดได้หรือในช่วงที่ไฟฟ้าขัดข้อง

ระบบ PV กระจายสำหรับพลังงานที่สามารถขยายได้

ระบบ PV กระจายที่มีแผงโมดูลติดตั้งตามหลังคาหรือพื้นที่เปิด

โซลูชันโซลาร์เซลล์กระจายของเราออกแบบมาเพื่อการติดตั้งในระบบไมโครกริด โดยการเก็บพลังงานจากหลายๆ โครงสร้างและพื้นที่ ระบบเหล่านี้มีเทคโนโลยีการติดตามข้อมูลและการปรับสมดุลโหลดที่ล้ำหน้า ช่วยเพิ่มประสิทธิภาพในการผลิตพลังงานและลดการพึ่งพากริดกลาง

เทคโนโลยีไมโครอินเวอร์เตอร์สำหรับการเพิ่มประสิทธิภาพที่ระดับแผง

ไมโครอินเวอร์เตอร์ที่เชื่อมต่อกับแผงโซลาร์เซลล์แต่ละแผง ช่วยเพิ่มประสิทธิภาพและความยืดหยุ่นของระบบ

ไมโครอินเวอร์เตอร์แต่ละตัวเชื่อมต่อโดยตรงกับแผงโซลาร์เซลล์แต่ละแผง เพื่อเพิ่มผลผลิตโดยการขจัดการสูญเสียจากการจับคู่ที่ไม่เหมาะสม การออกแบบนี้ช่วยเพิ่มความยืดหยุ่นของระบบไมโครกริดโดยรวม ช่วยให้สามารถขยายระบบได้อย่างมีประสิทธิภาพ และตรวจสอบการทำงานของแต่ละโมดูลแบบเรียลไทม์

ระบบ PV แบบบูรณาการบนหลังคา

ระบบ PV แบบบูรณาการที่ติดตั้งได้อย่างลงตัวในโครงสร้างหลังคา ให้ทั้งพลังงานและความสวยงาม

ระบบโซลาร์เซลล์ที่ติดตั้งบนหลังคานี้ให้ประโยชน์สองอย่าง: การปกป้องโครงสร้างและการผลิตพลังงานสะอาด ออกแบบมาเพื่อการติดตั้งในระบบไมโครกริดบนหลังคาของอาคาร สอดคล้องกับการออกแบบที่ทันสมัยและเพิ่มการสัมผัสกับแสงอาทิตย์ได้อย่างเต็มที่ เพื่อความทนทานที่ยาวนานภายใต้สภาพอากาศที่รุนแรง

การวัดการคายประจุเองของ

วิธีการวัดการคายประจุเองของแบตเตอรี่ลิเธียมไอออนส่วนใหญ่แบ่งออกเป็น 2 ประเภท: 1) วิธีการวัดแบบคงที่ ซึ่งได้อัตราการคายประจุเองโดยการยืน

เรียนรู้เพิ่มเติม →

วิธีวิเคราะห์ข้อมูลวงจร

วิธีการวิเคราะห์ข้อมูลวงจรแบตเตอรี่ลิเธียมไอออนประกอบด้วย: การตกตะกอนของลิเธียม การสลายตัวของวัสดุแคโทด ฟิล์ม SEI การสูญเสียอิเล็กโทรไลต์

เรียนรู้เพิ่มเติม →

หลักการทดสอบความจุของ

การทดสอบความจุของแบตเตอรี่ลิเธียม: ความเข้าใจง่ายๆ ก็คือ การเรียงลำดับความจุ การคัดกรองประสิทธิภาพ และการจัดลำดับ การแบ่งความจุของแบตเตอรี่ กล่าวคือ โดยการชาร์จและคายประจุแบตเตอรี่ ความจุของ

เรียนรู้เพิ่มเติม →

อัตรา C ของแบตเตอรี่และการ

อัตราประจุที่อ้างสิทธิ์ 4 C จึงสอดคล้องกับกระแส 12 A หรือประมาณ 0.12 A/cm^2 ซึ่งสูงกว่ากระแสจำกัดการแพร่กระจายที่คาดไว้ การเพิ่มอัตราการชาร์จเป็น 10 C

เรียนรู้เพิ่มเติม →

วิธีการทำความเข้าใจอัตราการ

อัตราการชาร์จและการปล่อยประจุของแบตเตอรี่จะถูกควบคุมโดยอัตรา C โดยทั่วไปความจุของแบตเตอรี่จะได้รับการจัดอันดับที่ 1C ซึ่งหมายความว่าแบตเตอรี่ที่ชาร์จเต็มที่มีอัตรา

เรียนรู้เพิ่มเติม →

10 อันดับ โรงงานผลิตแบตเตอรี่

TYCORUN ก่อตั้งขึ้นในปีพ.ศ. 2560 เป็นบริษัทเทคโนโลยีที่มุ่งเน้นการวิจัย พัฒนา และผลิตแบตเตอรี่ลิเธียมและผลิตภัณฑ์แบตเตอรี่ที่เกี่ยวข้อง TYCORUN มี

เรียนรู้เพิ่มเติม →

เคล็ดลับการชาร์จและการคาย

ปัจจุบันลูกค้ามืออาชีพสามารถประกอบแบตเตอรี่ได้เองมากขึ้นเรื่อยๆ ได้แก่ ซื้อเซลล์ BMS และส่วนประกอบอื่นๆ มาทำ DIY ก้อนแบตเตอรี่ที่สมบูรณ์.

เรียนรู้เพิ่มเติม →

แบตเตอรี่ลิเธียมรถกอล์ฟไฟฟ้า

ระบบจัดการแบตเตอรี่ที่ชาญฉลาด (BMS) แบตเตอรี่ลิเธียมที่ใช้ในรถกอล์ฟมาพร้อมระบบจัดการแบตเตอรี่ (Battery Management System) ซึ่งจะทำหน้าที่ตรวจสอบและควบคุมการ

เรียนรู้เพิ่มเติม →

พารามิเตอร์พื้นฐานของ

สะท้อนถึงอัตราการชาร์จแบตเตอรี่-คายประจุ; อัตราการคายประจุ = ประจุกระแสไฟที่คายประจุ / ความจุที่กำหนด. มันแสดงถึงความเร็วของการปลดปล่อย โดยทั่วไป ความจุของแบตเตอรี่สามารถตรวจจับได้ด้วยกระแสไฟที่ต่างกัน. ตัวอย่างเช่น

เรียนรู้เพิ่มเติม →

แบตเตอรี่ลิเธียมไอออน

การคายประจุเองต่ำ: เมื่อไม่ได้ใช้งาน แบตเตอรี่ลิเธียมไอออนจะสูญเสียประจุเพียง 2-3% ต่อเดือน ทำให้รักษาพลังงานได้นานขึ้น

เรียนรู้เพิ่มเติม →

วิเคราะห์ป้องกันหลักการชาร์จ

เมื่อทำการคายประจุโดยมีโหลดที่ปลายทั้งสองด้านของก้อนแบตเตอรี่ กระแสไฟฟ้า (ทิศทางตามลูกศรแสดง) จะตรงข้ามกับการชาร์จ ใน

เรียนรู้เพิ่มเติม →

การวิเคราะห์สาเหตุการสูญเสีย

อิเล็กโทรไลต์ที่ผสมกับไดเอทิลคาร์บอเนต (DEC) และไดเมทิลคาร์บอเนต (DMC) จะเกิดปฏิกิริยาการแลกเปลี่ยนในแบตเตอรี่เพื่อผลิตเมทิลเอทิลคาร์บอเนต (EMC

เรียนรู้เพิ่มเติม →

แบตเตอรี่ลิเธียม 12v คืออะไร

ตั้งแต่แบตเตอรี่ลิเธียมเข้ามามีส่วนในชีวิตประจำวันของเรา แบตเตอรี่ชนิดนี้ก็มาพร้อมกับนวัตกรรมหลากหลายอย่างที่ทำให้เราใช้อุปกรณ์ต่าง ๆ

เรียนรู้เพิ่มเติม →

วิธีอ่านกราฟการคายประจุและ

เมื่อแบตเตอรี่ลิเธียมถูกปล่อยประจุ แรงดันไฟในการทำงานจะผันผวนตามเวลา กราฟการคายประจุของแบตเตอรี่ลิเธียมสามารถหาได้โดยการวางกราฟความสัมพันธ์ระหว่างแรงดันไฟในการทำงานกับระยะเวลาการคายประจุ

เรียนรู้เพิ่มเติม →

ความแตกต่างระหว่างแบตเตอรี่

วงจรชีวิต:แบตเตอรี่ลิเธียมไอออนฟอสเฟตโดยทั่วไปจะมีอายุการใช้งานยาวนานกว่าแบตเตอรี่ลิเธียมไอออน โดยจำนวนรอบการชาร์จและการปล่อยประจุของ

เรียนรู้เพิ่มเติม →

แบตเตอรี่ลิเธียมไอออนคืออะไร

มีการคายประจุด้วยตัวเองต่ำ ทั่วไปแล้วแบตเตอรี่แม้ไม่ได้ถูกใช้งานก็จะค่อยๆ สูญเสียพลังงานอย่างต่อเนื่อง เรียกว่าการคายประจุด้วยตัวเอง (Self

เรียนรู้เพิ่มเติม →

การวิเคราะห์ข้อมูลวัฏจักร

เส้นกราฟประจุ-คายประจุหมายถึงเส้นโค้งของแรงดันไฟ กระแสไฟ ความจุ ฯลฯ ของแบตเตอรี่ที่เปลี่ยนแปลงไปตามกาลเวลาระหว่างการชาร์จและการคายประจุ

เรียนรู้เพิ่มเติม →

Charge and Discharge Testing of Lead-Acid Battery for

และการคายประจุ รูปที่ 2.11โครงสร้งพาื้นฐานของการอัดประจุบตแเตอรีขณะ่ทาการอัดประจุ 15 รูปที่ 2.12 วิธีการอัดประจุแบตเตอรี่ 18

เรียนรู้เพิ่มเติม →

Post | AEC

การชาร์จ Li-ion ที่ไม่มีส่วนผสมโคบอลต์ ในขณะที่ลิเธียมไอออนแบบดั้งเดิมมี nominal voltage ที่ 3.60V แต่แบตเตอรี่ Li-phosphate (LiFePO) นั้นแตกต่างด้วย nominal voltage ที่ 3.20V และชาร์จ

เรียนรู้เพิ่มเติม →

การวิเคราะห์และการประยุกต์

การประเมินลักษณะการคายประจุ: ความชันของเส้นโค้งการคายประจุสามารถสะท้อนถึงประสิทธิภาพการคายประจุของแบตเตอรี่

เรียนรู้เพิ่มเติม →

วิธีการคายประจุที่ถูกต้องของ

ชาร์จในเวลาเพื่อป้องกันการปล่อยมากเกินไป ผู้ใช้โทรศัพท์มือถือทั่วไปไม่ได้ตระหนักถึงอันตรายของการคายประจุมากเกินไปเพราะมักจะไม่มีรายงานเหตุการณ์ด้านความปลอดภัยในการปล่อยมากเกินไป

เรียนรู้เพิ่มเติม →

แบตเตอรี่รถยนต์ไฟฟ้ามีกี่

Sunday Tips! รู้ไว้ใช่ว่า! ทางค่ายรถยนต์ BYD ได้มีการพัฒนาแบตเตอรี่ Blade Battery ซึ่งเป็นแบตเตอรี่ลิเธียมไอรอนฟอสเฟสที่มีความปลอดภัยสูงและติดไฟยาก แม้จะ

เรียนรู้เพิ่มเติม →

5 เคล็ดลับในการยืดอายุ

เมื่อคุณลงทุนในแบตเตอรี่ลิเธียมไอออนคุณกำลังลงทุนซื้อแบตเตอรี่ที่มีอายุการใช้งานยาวนานกว่าแบตเตอรี่ตะกั่ว-กรดถึงสิบเท่า คุณต้องการให้

เรียนรู้เพิ่มเติม →

แบตเตอรี่ deep cycle คืออะไร

แบตเตอรี่ deep cycle มีส่วนสำคัญอย่างมากสำหรับระบบพลังงานทางเลือก อย่างระบบโซล่าเซลล์ หรือระบบกังหันลม เพราะเป็นแหล่งเก็บสะสมพลังงานจากกระแส

เรียนรู้เพิ่มเติม →

คู่มือที่ครอบคลุมเกี่ยวกับ

วัสดุที่ใช้ในส่วนประกอบแบตเตอรี่ลิเธียมเป็นปัจจัยสำคัญที่มีอิทธิพลต่อความสามารถในการทำงาน ในทำนองเดียวกัน วัสดุขั้วบวกอาจเป็นลิเธียม

เรียนรู้เพิ่มเติม →

การออกแบบทฤษฎีการประจุและการ

ความสัมพันธ์ระหว่างแรงดันและความจุที่อัตราการคายประจุและอุณหภูมิต่างๆ. 1 .3 ชาร์จเต็มแล้ว. รูปที่ 2 เส้นโค้งลักษณะการชาร์จของแบตเตอรี่ลิเธียม. 1 .4 แรงดันดิสชาร์จขั้นต่ำ (แรงดันดิสชาร์จขนาดเล็ก)

เรียนรู้เพิ่มเติม →

การชาร์จแบตเตอรี่ลิเธียม

การชาร์จ Li-ion ที่ไม่มีส่วนผสมโคบอลต์ ในขณะที่ลิเธียมไอออนแบบดั้งเดิมมี nominal voltage ที่ 3.60V แต่แบตเตอรี่ Li-phosphate (LiFePO) นั้นแตกต่างด้วย nominal voltage ที่ 3.20V และชาร์จ

เรียนรู้เพิ่มเติม →

การทดสอบอุณหภูมิและการคาย

เนื่องจากการเปลี่ยนแปลงที่สำคัญในสภาพการทำงานของรถยนต์ บทความนี้จึงทำการทดสอบการคายประจุของแบตเตอรี่ลิเธียมไอออนที่อุณหภูมิ -30, -20, -10, 0, 10, 30, 45

เรียนรู้เพิ่มเติม →

ลักษณะการคายประจุของ

ลักษณะการคายประจุของแบตเตอรี่ลิเธียมรถยกไฟฟ้ามีลักษณะที่สามารถแบ่งออกเป็นขั้นตอน. หลัก ๆ

เรียนรู้เพิ่มเติม →

พลังการถอดรหัส: ศิลปะแห่งการทำ

อัตราการคายประจุ และโหลดของแบตเตอรี่ อัตราที่แบตเตอรี่คายประจุตลอดจนโหลดที่วางอยู่บนแบตเตอรี่ อาจส่งผลต่อระดับ

เรียนรู้เพิ่มเติม →

ความคิดเห็นจากลูกค้าเกี่ยวกับโซลูชันไมโครกริดของเรา

  1. ตอบกลับ

    Emily Johnson

    10 มิถุนายน 2024 เวลา 14:30 น.

    การร่วมงานกับ EK SOLAR สำหรับการติดตั้งไมโครกริดพลังงานแสงอาทิตย์ของเราเป็นการเปลี่ยนแปลงครั้งสำคัญ ตัวอินเวอร์เตอร์แบบไฮบริดและระบบเก็บพลังงานช่วยจ่ายพลังงานให้กับโรงงานในชนบทของเราอย่างมั่นคงแม้ในช่วงเวลาที่โหลดสูงหรือเมื่อเกิดการตัดไฟจากระบบไฟฟ้า พวกเขามีทีมงานเทคนิคที่ช่วยให้การติดตั้งเป็นไปอย่างราบรื่นและเพิ่มประสิทธิภาพของระบบเพื่อลดการพึ่งพาพลังงานดีเซลลงมากกว่า 80%

  2. ตอบกลับ

    David Thompson

    12 มิถุนายน 2024 เวลา 10:45 น.

    เราได้ใช้ตัวอินเวอร์เตอร์ไมโครกริดและแผงโซลาร์เซลล์ของ EK SOLAR ในสถานีโทรคมนาคมที่ห่างไกล การวิเคราะห์ระบบแบบเรียลไทม์และประสิทธิภาพการแปลงพลังงานที่สูงช่วยให้เวลาในการทำงานดีขึ้นอย่างมาก อุปกรณ์สามารถเชื่อมต่อกับแหล่งพลังงานทั้งจากแผงโซลาร์เซลล์และเครื่องกำเนิดไฟฟ้าสำรองได้อย่างลงตัว ทำให้เหมาะสมกับการติดตั้งในพื้นที่ที่ไม่สามารถเข้าถึงกริดไฟฟ้า

  3. ตอบกลับ

    Sarah Lee

    13 มิถุนายน 2024 เวลา 16:15 น.

    โซลูชันไมโครกริดพลังงานแสงอาทิตย์ของ EK SOLAR เป็นสิ่งที่รีสอร์ทเชิงนิเวศของเราต้องการจริงๆ สถานีย่อยพลังงานที่มีการจัดเก็บพลังงานในตัวช่วยให้การดำเนินงานของเราไม่ขาดสะบั้นแม้ในเวลากลางคืนโดยไม่ต้องพึ่งพาระบบไฟฟ้าของภาครัฐ เทคโนโลยีของพวกเขาช่วยให้สามารถขยายระบบได้ตามต้องการและช่วยให้เราบรรลุเป้าหมายด้านความยั่งยืนได้อย่างมั่นใจ

© Copyright © 2025. EK SOLAR สงวนลิขสิทธิ์ทั้งหมด ผังเว็บไซต์